

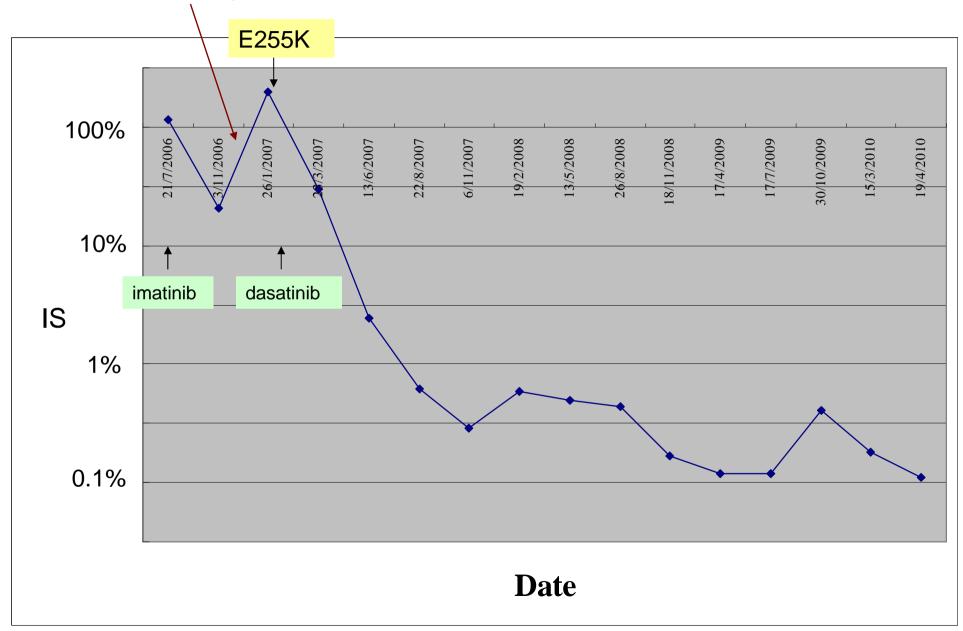
Linking cancer genomics with patient management

腫瘤基因組學在癌病治療之應用

Dr Edmond S K Ma

Department of Pathology

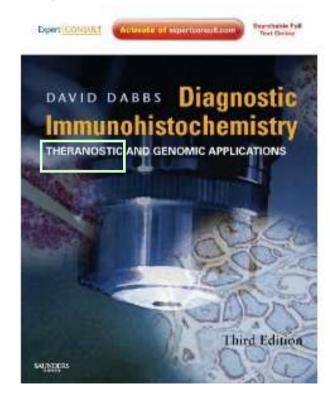
Hong Kong Sanatorium & Hospital


- Founded in 1922
- Private Hospital
- Wards (450 beds) and Clinics
- Comprehensive oncology centre

Example 1: Non-small cell lung cancer in a Chinese male, aged 75, ex-smoker

Ma ES et al, Ann Thorac Surg 90: e38 – 39, 2010

Example 2: Chronic myeloid leukaemia in a Chinese Male, aged 45 BCR-ABL Transcript level: $0.21 \rightarrow 1.98 = 9.5$ fold increase

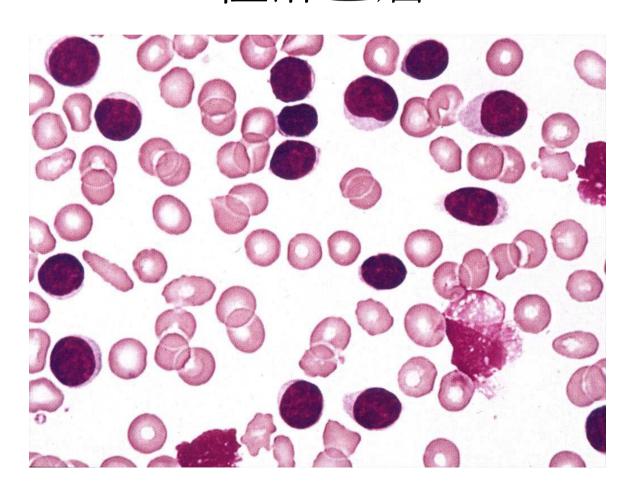


Cancer genomics and patient care

- Prognosis and risk stratification
- Identification of drug target
- Molecular monitoring and detection of resistance
- Pharmacogenomics

Personalized medicine

- Tailor medical care to individual needs based on genetic variation
- Predictive markers in Oncology
 - Outcome prediction
 - Prognosis and Risk stratification
 - Treatment response prediction
 - Drug targets
 - Pharmacogenomics
- New term: Theranostic
 (Diagnostics for direct therapeutic use)



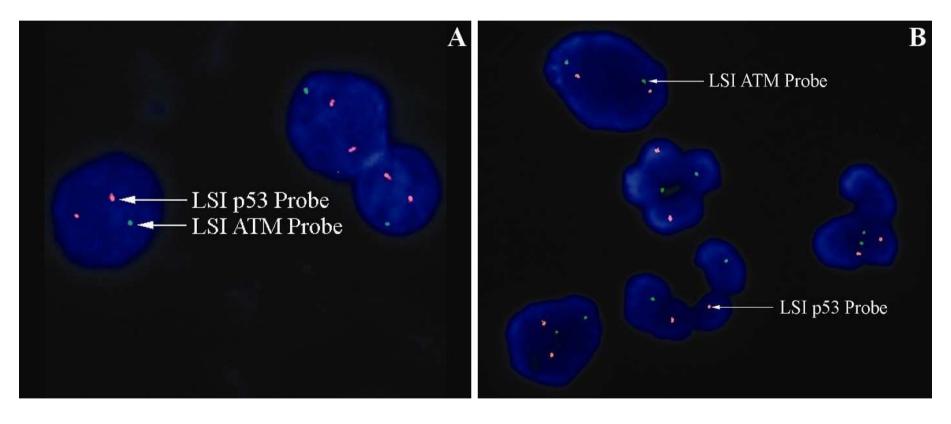
Cancer genomics and patient care

- Prognosis and risk stratification
- Identification of drug target
- Molecular monitoring and detection of resistance
- Pharmacogenomics

Chronic lymphocytic leukaemia (CLL)

慢性淋巴細胞性白血病/小淋巴細胞性淋巴瘤

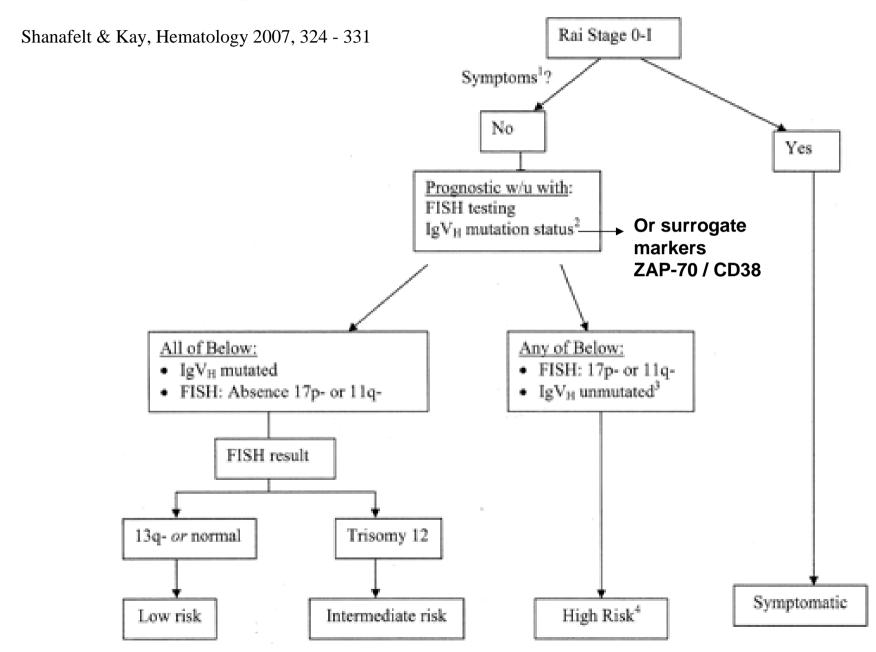
Genetic abnormalities in CLL


	Karyotype				
	Normal	13q deletion	Trisomy 12	11q deletion	17p deletion
Total patients (%)	18	55	16	18	7
Binet stage (%)*					
A*	53	72	51	25	23
B*	30	20	34	50	41
C	17	8	15	25	36
Overall survival (months)	120	132	120	84	30

^{*}Data refer to frequency with which every cytogenetic profile is noted in the different Binet stages—ie, 18% of patients have a normal karyotype, of whom 53% are Binet stage A.

Table 1: Genetic aberrations in chronic lymphocytic leukaemia18

Fluorescence *in-situ* hybridization (FISH)


瑩光原位雜交

CLL patient with chromosome 11q (ATM) deletion

慢性淋巴細胞性白血病/小淋巴細胞性淋巴瘤

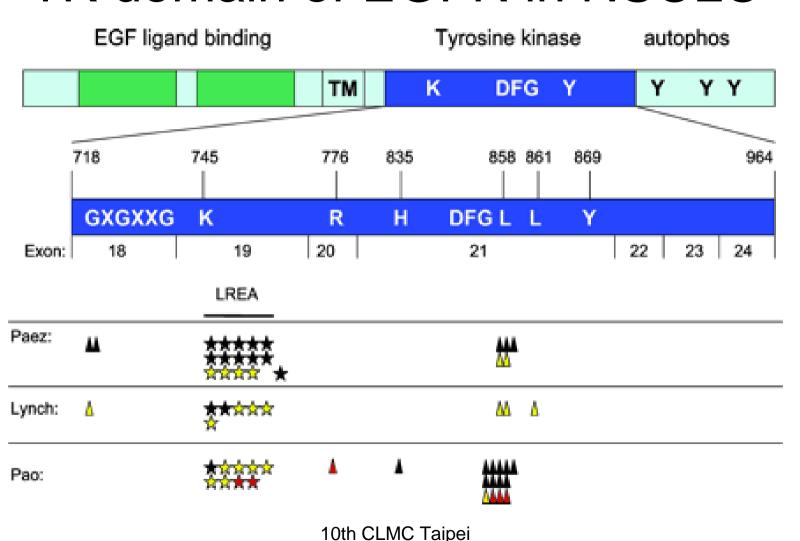
CLL risk stratification

Emerging use of interphase FISH in risk stratification

- CLL
 - 13q-, 11q-, 17p-, +12
- Myeloma
 - Favourable
 - Hyperdiploid
 - Unfavourable
 - t(4;14)
 - t(14;16)
 - del(17)p/p53
 - Coupled with immunofluorescence or cell sorting

Cancer genomics and patient care

- Prognosis and risk stratification
- Identification of drug target
- Molecular monitoring and detection of resistance
- Pharmacogenomics


Identification of drug target

- Non-small cell lung cancer
 - EGFR mutation
 - EML4-ALK gene fusion

EGFR testing

- EGFR expression by IHC
- EGFR gene mutation
 - First discovered in 2004
 - Gefitinib: Harvard/DFCI
 - Gefitinib & erlotinib: MSKCC
- EGFR gene amplification

Spectrum of mutations detected in TK domain of EGFR in NSCLC

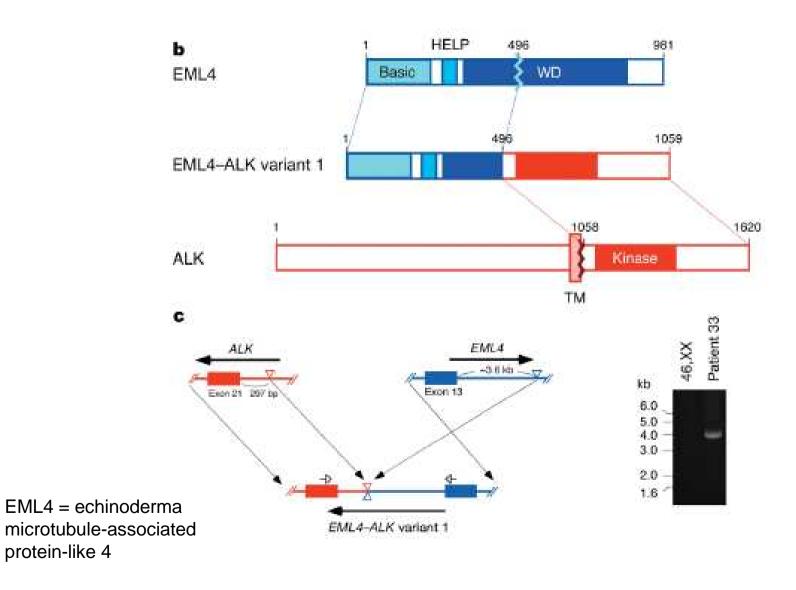
EGFR gene mutation

- Methods
 - PCR Sequencing
 - Allele specific real-time
 PCR
 - Others
 - HRM
 - dHPLC
 - Luminex
 - etc

PCR sequencing	Allele specific real-time PCR
Covers all mutations	Covers specific mutations
Less sensitive (15 – 20%)	More sensitive (1%)
Needs microdissection	Can do without microdissection
More tedious	Simpler
Less expensive	More expensive

HKS&H experience

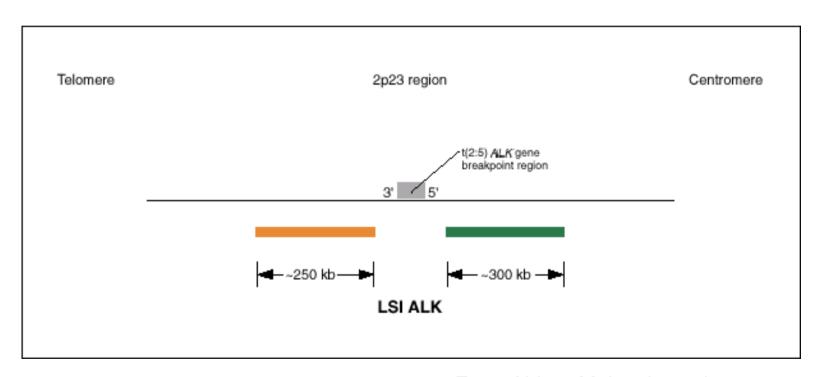
- n = 481 cases
 - accrued from September 2005 to April 2009
- Positive rate 43.7% (210/481)
 - Exon 19 deletion 46% (86/210)
 - ELREA 29.5% (62/210)
 - Exon 21 mutation L858R 39% (82/210)
- Double mutations 10.5% (22/210)
- Rare scenarios
 - Concurrent sensitive and resistant mutants (n = 3)
 - Concurrent EGFR and KRAS (n = 1)


EGFR exon 20 insertion/duplication/deletion mutations

- Associated with primary or de novo resistance
 - c.f. secondary or acquired resistance due to T790M
- Positive rate (HKS&H data from 2005 2010)
 - 3.6% (29 patients out of 803 tested)
- Treatment outcome
 - Available in 17 patients
 - 8 treated with TKI (gefitinib = 6, erlotinib = 2)
 - Only 1 showed stable disease and alive at 20 months
 - The rest showed progressive disease on treatment from 3 weeks to 4 months

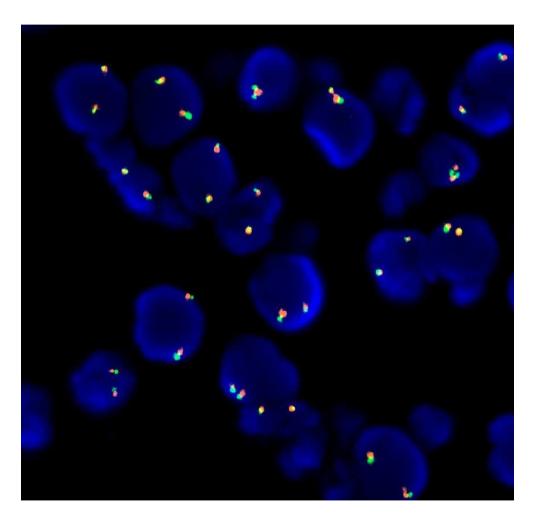
Emerging molecular markers in NSCLC

- MET amplification
- EML4-ALK fusion
 - First identified by Japanese group in 2007 (Nature 448: 561 – 566, 2007)
 - Associated with male patients who are young and never/light smokers
 - Mutually exclusive with EGFR and KRAS
 - Not responsive to EGFR TKI
 - Considered for trial of ALK inhibitors

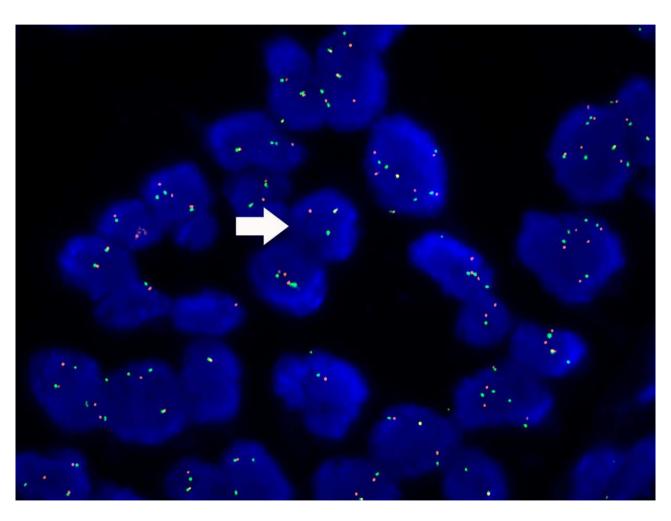

EML4-ALK gene fusion

protein-like 4

ALK dual-colour split apart FISH probe


Method employed by Shaw AT et al, JCO 27: 4247 - 53, 2009

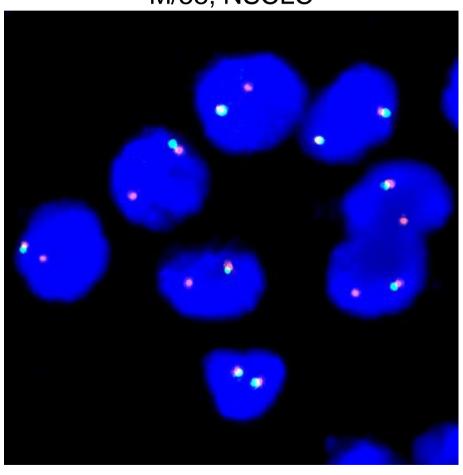
From Abbott Molecular web page


10th CLMC Taipei

Normal signal pattern

10th CLMC Taipei

Patient result, F/49, NSCLC

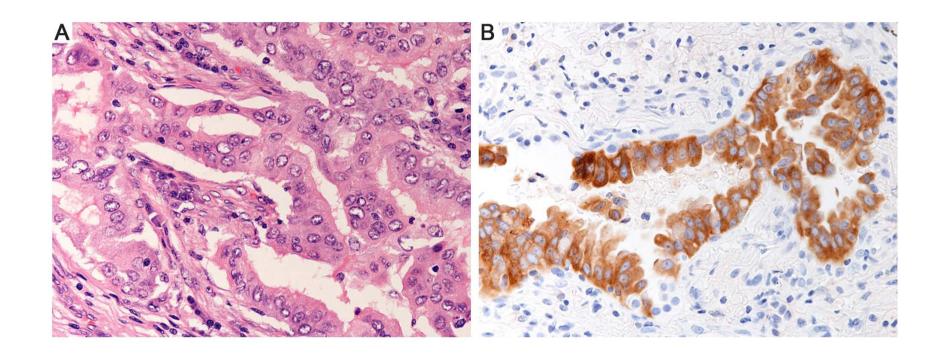

10th CLMC Taipei

Summary of ALK FISH in NSCLC

- n = 41
- Indeterminate = 2
- Positive = 8 (21%)
 - Typical FISH pattern = 6
 - Atypical FISH pattern (1R1F) = 2
- Concurrent with EGFR mutation = 1
 - EGFR mutation positive = 8
 - KRAS mutation positive = 2

ALK FISH by dual-colour split apart probe

M/58, NSCLC

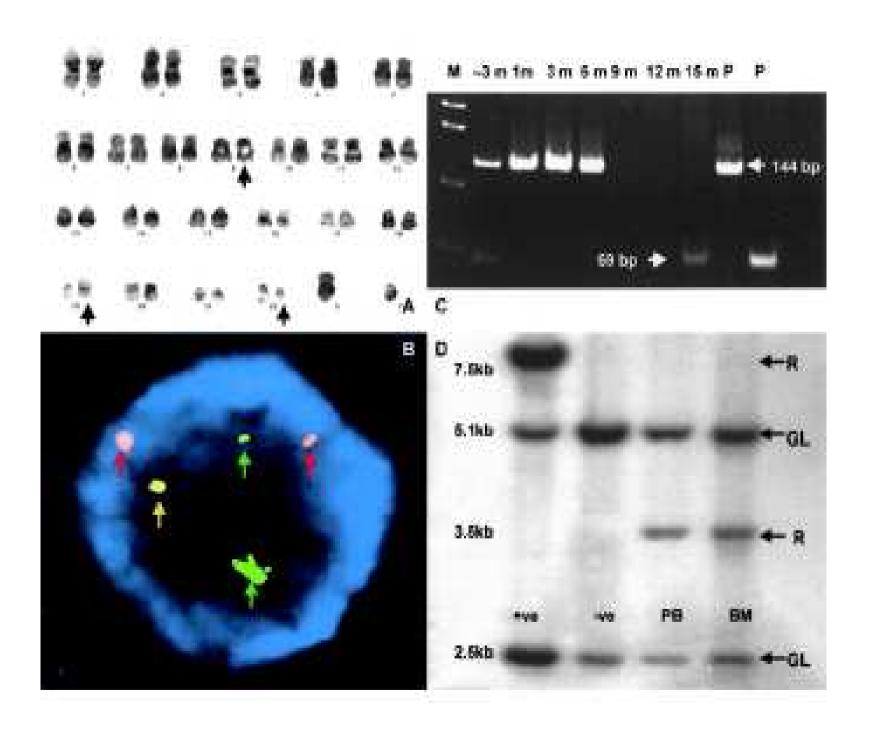

Atypical FISH signal pattern

Laboratory detection of EML4-ALK fusion

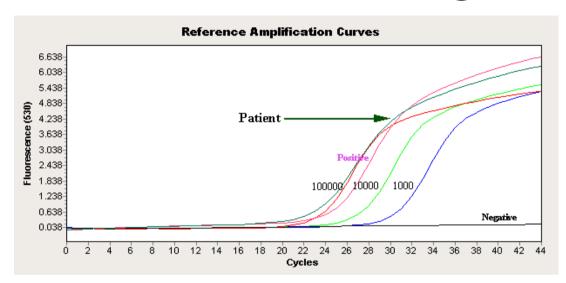
FISH

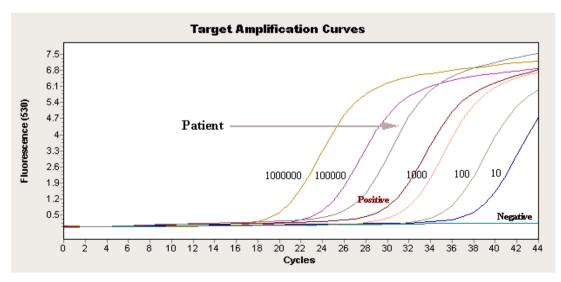
- ALK dual colour split apart
- EML4-ALK dual colour dual fusion
- PCR
 - RT-PCR for the fusion transcript
 - Sequencing
 - Multiplex RT-PCR to cover different isoforms
- IHC with ALK-1 antibody
- Dual ISH (bright field)

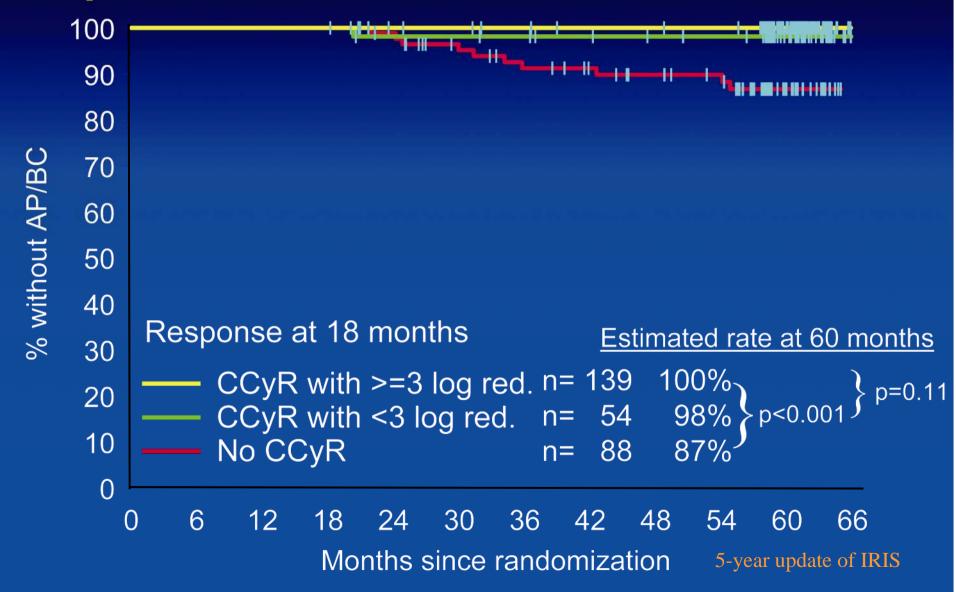
ALK immunohistochemistry


Cancer genomics and patient care

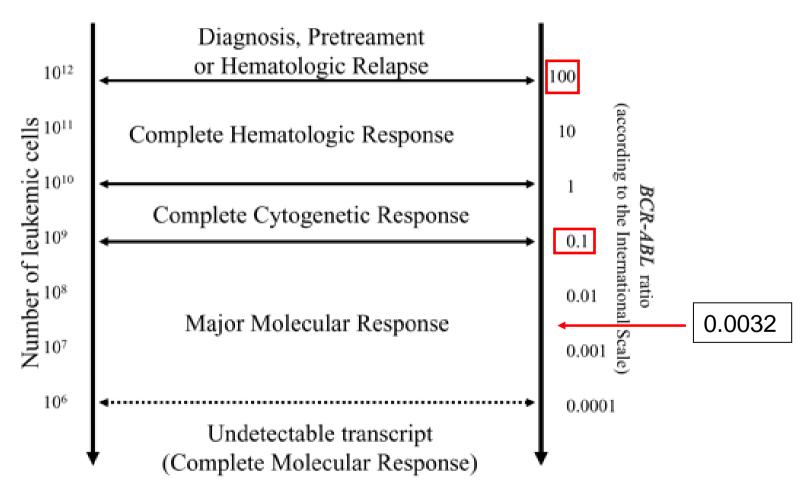
- Prognosis and risk stratification
- Identification of drug target
- Molecular monitoring and detection of resistance
- Pharmacogenomics


Monitoring treatment response and detection of drug resistance


Chronic myeloid leukaemia on imatinib therapy


BCR-ABL real-time quantitative PCR

Survival Without AP/BC by Molecular Response at 18 months on First-line Imatinib



CML monitoring: clinical significance

- Prognostication
 - Predicts progression-free survival
- Management
 - Detection of acquired imatinib resistance
 - ABL kinase domain mutation
 - Treatment decision
 - Dose escalation of imatinib
 - Second generation tyrosine kinase inhibitors
 - Allogeneic HSCT

Standardization of RQ-PCR

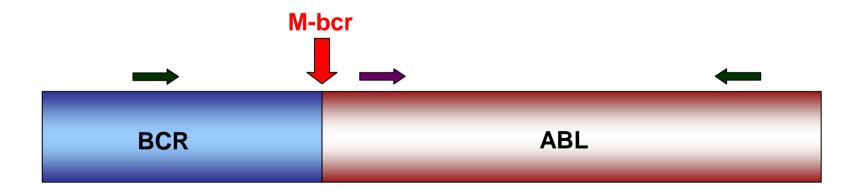
International scale based on deriving laboratory specific conversion factors

Baccarani M et al for the European LeukemiaNet, Blood 108: 1809-20, 2006

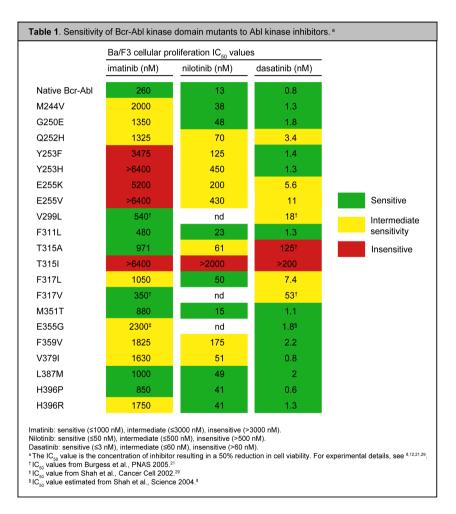
Standardization of RQ-PCR

• RQ-PCR

- BCR-ABL 23,500 copies
- ABL 469,000 copies
- -BCR-ABL/ABL = 0.05
- $IS = 0.05 \times 1.221 = 0.061$ (6.1%)


- Laboratory considerations
 - Document the type of transcript
 - Adequate nucleated cells and amplifiable copies of control gene
 - Limit of detection
 - Internal QC
 - Proficiency testing
 - Standardization and reporting of results
 - Reference material

KD mutation detection: indications


- Fail to achieve certain treatment milestone response
- Loss of response
- Progression to accelerated to blastic phase
- Significantly rising BCR-ABL transcript level

BCR-ABL Kinase Domain Mutation

- Semi-nested PCR performed to specifically amplify region of kinase domain of BCR-ABL fusion gene transcript
- Direct nucleotide sequencing in both directions was performed using ABI 3130xl genetic analyzer
- Sequence analysis performed with SeqScape software

In-vitro activity of tyrosine kinase inhibitors on mutants

O'Hare T, Eide CA & Deininger MW. Blood, May 11, 2007

		C ₅₀ fold increase (WT = 1)			
		Bosutinib	I matinib	Dasatinib	Nilotinib
	Parenta	38.31	10.78	> 50	38.43
	WT	1	1	1	1
P-LOOP	L248V	2.97	3.54	5.11	2.80
	G250E	4.31	6.86	4.45	4.56
	Q252H	0.81	1.39	3.05	2.64
1-2001	Y253F	0.96	3.58	1.58	3.23
	E255K	9.47	6.02	5.61	6.69
	E255V	5.53	16.99	3.44	10.31
C-Hellix	D276G	0.60	2.18	1.44	2.00
C-Helix	E279K	0.95	3.55	1.64	2.05
ATP binding	V299L	26.10	1.54	8.65	1.34
region (drug contact sites)	T315I	45.42	17.50	75.03	39.41
	F317L	2.42	2.60	4.46	2.22
SH2-contact	M351T	0.70	1.76	0.88	0.44
Substrate binding region (drug contact sites)	F359V	0.93	2.86	1.49	5.16
	L384M	0.47	1.28	2.21	2.33
A-LOOP	H396P	0.43	2.43	1.07	2.41
	H396R	0.81	3.91	1.63	3.10
	G398R	1.16	0.35	0.69	0.49
C terminal lobe	F486S	2.31	8.10	3.04	1.85
0 11		-3	I		
Sensitive		≤2			
Moderately resistant Resistant		2.01-4			
11001010111		4.01-10			
Highly resistant		> 10	I		

Redaelli S *et al*, J Clin Oncol 27: 469 – 71, 2009

Spectrum of *ABL* Kinase Domain Mutation seen at HKS&H

- Found in 23 out of 60
 (38.3%) up to early April 2010
- Double mutation = 5; triple = 1
 (i.e. total 30 mutations)

- P-loop mutations = 14
 - M244V = 4
 - L248V = 2
 - G250E = 1
 - Y253F/H = 2
 - E255K = 4
 - E255V = 1
- E279K = 1
- T315I = 5
- F317L = 6
- M351T = 1
- F359V/C = 3

Spectrum of *ABL* Kinase Domain Mutation seen at HKS&H

- Found in 23 out of 60
 (38.3%) up to early April 2010
- Double mutation = 5;
 triple = 1
 (i.e. total 30 mutations)

- P-loop mutations = 14
 - M244V = 4
 - L248V = 2
 - G250E = 1
 - Y253F/H = 2
 - E255K = 4
 - E255V = 1
- E279K = 1
- T315I = 5
- F317L = 6
- M351T = 1
- F359V/C = 3

2G-TKI clinically relevant mutations

- Resistant to 2G-TKI
 - T315I
- Less sensitive to nilotinib
 - Y253H, E255K/V, F359V/C
- Less sensitive to dasatinib
 - F317L, V299L

Branford S, Melo JV, Hughes TP. Blood 2009; 114: 5426 - 35

Cancer genomics and patient care

- Prognosis and risk stratification
- Identification of drug target
- Molecular monitoring and detection of resistance
- Pharmacogenomics

Pharmacogenomics in oncology

Genetic target	Anti-cancer drug
CYP2D6	tamoxifen
TPMT	6-mercaptopurine
UGT1A1	irinotecan
TYMS or TS	5-FU
ERCC1	cisplatin
RRM1	gemcitabine

Which test?

Which method?

Which drug?

DRUG == TEST

Analytical validity

Clinical validity

Clinical utility

Ethical, legal, social implication

10th CLMC Taipei